Goodwillie Approximations to Higher Categories

نویسندگان

چکیده

We construct a Goodwillie tower of categories which interpolates between the category pointed spaces and spectra. This refines identity functor in precise sense. More generally, we such for large class ∞ \infty -categories alttext="script upper C"> class="MJX-tex-caligraphic" mathvariant="script">C encoding="application/x-tex">\mathcal {C} classify towers terms derivatives . As particular application show how this provides model homotopy theory simply-connected coalgebras spectra with Tate diagonals. Our classification simplifies considerably settings where cohomology symmetric groups vanishes. an example apply our methods to rational theory. Another identifies alttext="p"> p encoding="application/x-tex">p -local certain finite range algebras over Ching’s spectral version Lie operad. is close analogue Quillen’s results on homotopy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTRODUCTION TO HIGHER CLUSTER CATEGORIES

In this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. We focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of Fomin and Reading, and colored quiver mutation.

متن کامل

an introduction to higher cluster categories

in this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. we focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of fomin and reading, and colored quiver mutation.

متن کامل

an introduction to higher cluster categories

in this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. we focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of fomin and reading, and colored quiver mutation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Memoirs of the American Mathematical Society

سال: 2021

ISSN: ['1947-6221', '0065-9266']

DOI: https://doi.org/10.1090/memo/1333